Timo Niroma è uno studioso solare finlandese che ha elaborato un’intressantissima teoria, puramente statistica, sul perchè alcuni cicli durino di meno o di più di altri e soprattutto sul perchè ogni tot anni occorrono super minimi tipo il maunder, dalton ect. Questo studio prende in considerazione l’orbita di alcuni pianeti del nostro sistema solare, ed in particolar modo del pianeta più grande, ossia Giove!
Per farla breve, Timo ha notato che nel corso dei secoli, più Giove si avvicina al sole, e più il numero di macchie solari diminuisce ed i cicli si allungano, a causa dell’influenza del campo magnetico che il pianeta ha verso il sole. Secondo questa teoria, Niroma già dal 2006 aveva predetto che il ciclo 23 sarebbe durato 13 anni, prevedendo il suo minimo nell’estate 2009 ed una ripresa del ciclo 24 nel 2014, prevedendo inoltre che sarà un ciclo molto debole stile dalton, con al massimo 30-60 SSN! E tutto ciò proprio perchè Giove sarà al perielio!
Qui sotto uno stralcio significativo del Niroma pensiero:
Now the next Jovian perihelion is in late March in 2011. I predict that the length of the cycle 23 is 13 years. This means a minimum in Summer 2009. The exact length depends on what we regard as the real minimum, the arithmetic 1996.4 or the agreed-upon 1996.8. Actually it seems that there were two minima. A late spurt of the cycle 22 stopped for a while the first steps of the cycle 23.
Either way this means that the cycle 24 will be very low, in the range of 30-60, or a Dalton level. This means that the maximum will be reached only in 2014. All this means there will be a cooling for decades, for 60 to 80 years. (A sidestep: The rise of the CO2 in atmosphere from 0.03 to 0.04 % does not have any meaning in this play as the last 200 million years in Earth’s history show. I am a statistician and this is a statistical study, but a remark for those, who urgently for years have asked me about the physical reason: I find the Svensmark theory (2006) of cosmic rays oscillating to the rhythm of the Sun’s magnetic field as the most promising. The CERN investigations in 2008 probably will settle the issue.)
If we ignore the elliptical orbit of Jupiter around the Sun and replace it with a more easily grasped model, we can imagine Jupiter as approaching the Sun 5.93 years and then suddenly reverse the approach to escape for the next 5.93 years at the moment Jupiter is at its heliocentric perihelion. Now we see that we can imagine Jupiter’s magnetosphere as approaching the Sun, intruding into it, warping it and finally intertwin with it, when Jupiter approaches the Sun. During the perihelion the direction and effect are suddenly reversed. As you see later, the statistical measurements show that sunspots in average get more scarce when Jupiter nears the Sun. At the perihelion the smoothed value has never exceeded 100 Wolfs since we have the monthly values from 1749.