Archivi giornalieri: 30 Giugno 2010

SCORIE NUCLEARI 2: aspetti quantitativi

Situazione in gennaio 2010:
Centrali nucleari civili che producono energia elettrica: 436
Potenza elettrica 370 GW
Energia elettrica da centrali nucleari fino al gennaio 2010: 62 migliaia di miliardi di kWh
Rendimento delle centrali di seconda generazione: 33%
Energia termica prodotta: 7 828 000 GWD (GigaWattDays) 21 447GWA (GigaWattAnni)
Burn up delle centrali di seconda generazione: 40 GWD/T

Vuol dire che una tonnellata di uranio metallico produce 40 GigaWattGiorni di energia termica. Per risalire all’energia elettrica prodotta occorre ridurre questo numero per il rendimento.

Dal burn up e dal rendimento si può calcolare la quantità di uranio usato per la produzione dell’energia elettrica. Questa quantità è uguale alla quantità di combustibile esaurito e alla quantità di scorie altamente radioattive prodotte.

Il risultato di questo calcolo è che finora sono state prodotte 196 000 tonnellate di scorie altamente radioattive.

Le quantità in realtà sono più alte per i seguenti motivi:

· Il burn up all’inizio dell’energia nucleare era di 30 GWD/to.
· Il rendimento era inferiore al 33%.
· Insieme all’uranio ci sono altri materiali: Incapsulamento e ossigeno quando si usano ossidi invece di metalli.

(Da T. Mukaiyama. Motivation and Programs for Transmutation of Nuclear Waste, Otto Hahn Summer Scholl 2002 Lectures, CEA – Cadarache, France 2002,
ripreso da Wikipedia,
ripreso da Marco Calviani. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors, 2 febbraio 2009, tesi di dottorato, Università di Padova)

Vale la curva PWR (Pressurized Water Reactor) che è praticamente uguale a quella dei BWR (Boiling Water Reactor) che attualmente sono prevalenti.

Il diagramma mostra la radiotossicità delle scorie per 1 GWt anno. In gennaio 2010 l’energia termica prodotte dalle centrali nucleari era di 21447 GWA. La dose letale per l’uomo è 6 Sievert.

Se tra 100 anni la popolazione mondiale è di 10 miliardi di individui, le scorie nucleari prodotte fino al gennaio 2010 sono idonee a uccidere questa popolazione 300 volte.

Andamento della pericolosità di singoli elementi delle scorie per 10 milioni di anni
TRU = transuranic
FP = Fission product
da Marco Calviani. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors, 2 febbraio 2009, tesi di dottorato, Università di Padova)
Di nettunio 237, che a lungo termine è la scoria più pericolosa a causa della sua solubilità e della sua tendenza a migrare, dopo un milione di anni ce n’è di più che dopo l’estrazione dal reattore.

La composizione degli elementi combustibili nuovi e easuriti. MA = Minor Actinides = nettunio, americio, curio. LLFF = Low Level Fission Fragments. FF = fission fragments. Le quantità si riferiscono a 1 GW elettrico per un anno. (da Tesi di dottorato Marco Calviani).

Bombe sporche

Le scorie nucleari ad alta radioattività (HLW) possono essere usate per la produzione di bombe sporche. Distribuire nell’atmosfera 2 tonnellate di questo materiale con l’esplosione di 2 tonnellate di TNT produce un effetto devastante peggiore dell’esplosione del reattore di Cernobyl.

C’è molta preoccupazione per la proliferazione delle armi nucleari. Si litiga con l’Iran perché si prepara per la produzione di bombe nucleari. Il rischio di bombe sporche sulla base di scorie prodotte da qualsiasi reattore nucleare non viene messo in evidenza.

Produrre bombe nucleare è costoso e tecnicamente complicato. In confronto con le bombe sporche l’effetto è modesto. Con una bomba nucleare si distrugge una città, con una bomba sporca una regione.

A livello mondiale ci sono 34 paesi con impianti nucleari per la produzione di energia elettrica, tutti producono scorie nucleari e nessuno sa dove metterli.

La produzione di bombe sporche è semplice. Il materiale è disponibile, si paga per farlo portare via.

Deposito sicuro per scorie nucleari

Scorie nucleari non devono entrare nella biosfera
Scorie nucleari non devono andare nelle mani di malintenzionati

Nella tesi di Marco Calviani è specificato che soluzioni ingegneristiche potrebbero tenere per mille anni. Dopo ci vogliono depositi geologici sicuri.

In Germania c’erano due siti geologici, dichiarati sicuri da geologi, nel senso che per un milione di anni non sarebbe entrata l’acqua. Dopo dieci anni l’acqua era dentro. Occorre traslocare tutto. Il governo tedesco ha dichiarato che il problema non è risolto.

C’è un dubbio sull’affermazione che soluzioni ingegneristiche tengano per mille anni. Il sarcofago di Cernobyl non tiene. Le radiazioni lo distruggono.

I materiali usati per la protezione subiscono alterazioni a causa delle radiazioni. Ci sono raggi gamma molto penetranti, che per effetto Compton spostano elettroni. Ci sono neutroni che rendono nuclei radioattivi e li trasformano in altri elementi. Acciai diventano fragili come vetri. Vetri diventano idrosolubili.

Elmar Pfletschinger