Archivi categoria: Sole e Clima

La sottile relazione fra cicli solari, piogge (e frane e alluvioni…) in Italia

Il clima terrestre e le sue variazioni sono governati da una serie di fattori geologici (emissioni dai vulcani, posizione dei continenti e delle catene montuose), atmosferici (quantità di copertura nuvolosa, tenore di gas – serra) e astronomici (parametri orbitali e cicli solari): tutti insieme contribuiscono a stabilire le condizioni climatiche e meteorologiche sulla superficie terrestre. Queste variazioni sono diventate più sensibili da quando, 2 milioni di anni fa, si sono formate le grandi calotte polari permanenti anche nell’emisfero boreale dopo che quella Antartica era già presente da oltre 30 milioni di anni. Nell’emisfero australe la corrente circumpolare blocca gli scambi termici con le latitudini australi più basse, mentre nell’emisfero settentrionale l’Oceano Atlantico disposto nord – sud costituisce invece un ottimo corridoio per gli scambi termici fra le basse e le alte latitudini boreali e il ciclo solare, con le variazioni di intensità della radiazione che comporta, ha un effetto piuttosto importante su questo sistema, regolando persino la quantità delle piogge nel Mediterraneo.  Vediamo come succede, con una postilla su possibili relazioni fra queste grandezze e una estate che stenta a decollare.
LE GRANDEZZE CHE INFLUENZANO LE VARIAZIONI CLIMATICHE PERIODICHE IN EUROPA.
Qualche anno fa scrissi un post sulla Oscillazione Artica, un indice che viene determinato confrontando nell’emisfero boreale la pressione atmosferica delle alte latitudini con quella delle medie e che ha una certa influenza sulle temperature. Non c’è una relazione deterministica fra Oscillazione Artica e temperature, ma in genere quando questa ha un valore alto dalle nostre parti le temperature sono più alte della media e viceversa. Mi ricordo che all’epoca le previsioni della NOAA (quelle attuali sono queste) la davano parecchio in calo: era gennaio e pensai che forse sarebbe venuta una bella ondata di freddo, il che si verificò davvero! Da allora osservo spesso sul sito della NOAA l’andamento di questo indice.
L’Oscillazione Artica è piuttosto irregolare, mentre ci sono altri due indici atmosferici che invece si propongono con una certa regolarità, la AMO (Multidecadal Atlantic Oscillation) e la NAO (North Atlantic Oscillation).
Il fatto curioso è che specialmente la NAO viene governata da fattori astronomici e non solo dalla stagione.
Come è noto la posizione del Sole nel corso dell’anno determina l’avvicendarsi delle stagioni e questo grazie la sua influenza sulla posizione delle figure atmosferiche principali; ad esempio il centro dell’anticiclone delle Azzorre si muove lungo un asse N/S nell’Oceano Atlantico e raggiunge il punto più a nord tra Giugno e Luglio e quello più a sud tra Gennaio e Febbraio, perchè si sposta nel corso dell’anno seguendo con un leggero ritardo la posizione  del Sole allo zenit. Il movimento è provocato dalle differenze stagionali nell’angolo di incidenza dei raggi solari e quindi della posizione dell’area di massimo riscaldamento.
Allo stesso modo ci sono differenze climatiche importanti che dipendono dalle variazioni dell’intensità della energia che arriva sulla Terra dovute ai cicli solari undecennali di attività. Questi cicli furono scoperti all’inizio del XIX secolo dal grande astronomo William Herschel in un modo piuttosto curioso: trovò che le variazioni nel numero di macchie solari erano in sintonia con i prezzi del grano in Gran Bretagna e ciò gli suggerì una relazione fra intensità dell’attività solare e condizioni climatiche. È ormai chiaro che in genere al diminuire della attività solare aumenta a scala globalel a copertira nuvolosa .
L’INFLUENZA DEI CICLI SOLARI SUL CLIMA NELL’ATLANTICO SETTENTRIONALE E IN EUROPA
Il clima europeo è influenzato dalle variazioni della AMO e della NAO. La AMO è un indice ricavato dalle temperature delle acque superficiali dell’Atlantico Settentrionale ed indica il loro scostamento da un valore medio. Si noti che questo valore medio viene raggiunto solo durante le fasi di variazione da una AMO negativa a una AMO positiva e viceversa: in genere l’indice si pone su valori molto più alti o molto più bassi del normale.
La figura 1 mostra l’andamento della AMO dal XX secolo a oggi. Si nota come una fase ad anomalia “calda” è stata presente tra gli anni ’30 e gli anni ’60 del XX secolo, mentre una fase ad anomalia “fredda” ha caratterizzato il periodo tra la metà degli anni ’60 e gli ’80.
I fattori che influenzano la AMO sono ancora oggetto di dibattito: apparentemente la lunghezza dei suoi cicli, molto più lunga, è incompatibile con quella dei cicli undecennali solari e viene messa in relazione a variazioni nel sistema delle correnti dell’Atlantico Settentrionale in cui una corrente calda (quella del Golfo) scorre in superficie verso nord e correnti fredde scorrono in profondità verso sud.
Inoltre non ci sono dubbi che sul fatto che le principali eruzioni vulcaniche abbiano un effetto regolatore sulla AMO [1], visto che ce l’hanno a livello globale (ne ho parlato in diversi post – per esempio qui).
Ma l’indice che più domina ed influenza il clima europeo è la NAO (North Atlantic Oscillation), un coefficiente definito nel 1997 in base alla differenza fra la pressione normalizzata a Gibilterra e a Stykkisholmur in Islanda [2]. La NAO segue un ciclo di durata simile a quello solare, anche se come nel caso dei movimenti annuali dell’anticiclone delle Azzorre, la risposta della NAO ai cicli solari è leggermente sfalsata [3].
In buona sostanza, con una NAO positiva si rafforzano sia l’anticiclone delle Azzorre che le depressioni islandesi. Faccio una precisazione: dico “le depressioni” perchè mentre l’anticiclone delle Azzorre è statico ed è sempre lo stesso, nell’Atlantico settentrionale le depressioni si formano di continuo e si muovono più o meno velocemente verso est (o sudest), susseguendosi nel tempo: quindi abbiamo “sempre” UNA depressione dell’Islanda ma non è mai la stessa.
Una maggiore forza di queste figure atmosferiche è indubbiamente in relazione con la maggiore radiazione solare perchè maggiore è il riscaldamento equatoriale, maggiori sono gli scambi termici con l’Artico e quindi si capisce perchè i massimi della NAO si verificano dopo i massimi solari e i minimi si verificano dopo i minimi solari. Bisogna considerare anche nel bilancio del riscaldamento solare che l’Artico “incassa” meno calore delle medie e basse latitudini sia perchè i raggi solari lo colpiscono con un angolo minore, sia perchè essendo bianca per il ghiaccio, la superficie del mare e delle terre fa rimbalzare via buona parte della (poca) radiazione che lo colpisce.
Quindi più la NAO è alta, più le perturbazioni stanno verso nord e quindi il clima è più umido e più caldo del normale sul nord Europa e più secco e più fresco nell’area mediterranea. Al contrario una NAO debole porta precipitazioni inferiori alla media e clima più secco nell’Europa Settentrionale, mentre aumenta le piogge in Europa meridionale, ad esempio in pianura padana [4], in Calabria [5] e anche per la penisola iberica, dove è in stretta correlazione con il numero di frane che si verificano in Portogallo in un’area vicino a Lisbona [6].
La NAO governa anche lo spessore degli anelli di crescita degli alberi [7] e pertanto proprio studiando la dendrocronologia si possono avere buone indicazioni delle sue alternanze nel passato.
CICLI SOLARI ED EVENTI METEORICI ESTREMI IN ITALIA
Le variazioni di intensità delle precipitazioni ed altre variazioni indotte da AMO e NAO hanno avuto un forte impatto nella vita sociale italiana. Ad esempio il boom dello sci di massa durante gli anni ’70, oltre alla pubblicità fornita dalle eccellenti prestazioni di alcuni atleti di nazionalità italiana, è stato favorito da autunni piovosi e freschi promossi dalla fase fredda dettata in quegli anni dalla AMO, grazie ai quali fu ottenuta una copertura nevosa ottimale.
La NAO invece, strettamente dipendente dal ciclo solare, è alla base dell’alternanza fra treni di annate più freschi e piovosi, che si annidano intorno ai minimi in alternanza a treni di annate più calde e meno piovose intorno ai massimi e pertanto si può affermare che i cicli solari governano il tempo in Italia e altrove in Europa.
Come corollario, in un Paese come il nostro, le fasi in cui il valore dell’Oscillazione dell’Atlantico Settentrionale è bassa, corrispondendo a piogge copiose, sono anche quelle durante le quali avviene un maggior numero di eventi alluvionali e franosi [8].
La figura 3, di Nicola Casagli, correla i numeri delle vittime di catastrofi idrogeologiche in Italia con i cicli solari. Si può notare che le alluvioni non presentano una distribuzione casuale nel tempo ma tendono a raggrupparsi in cluster temporali, annidati intorno ai minimi. Fra queste catastrofi sono considerati anche eventi fondamentalmente di natura antropica (i disastri delle dighe di Gleno, Vajont e Stava), perchè i problemi sono stati innescati da periodi anomalmente piovosi.
Si può notare anche che la serie di annate piovose si allunga proseguendo nei dintorni del massimo quando questo è debole come nel 1970 e in quello attuale: ed è la debolezza del ciclo solare n.24 ora in atto che ha prolungato il periodo di piogge correlato al minimo del 2008 e la storia italiana è punteggiata da una fitta serie di disastri idrogeologici che hanno investito un po’ tutto il Paese.
A me sembra pure di trovare una correlazione fra il tipo di alluvione e la AMO, perchè le modalità di questi disastri negli ultimi anni sono nettamente diverse da quelle di prima; gli eventi tipo quella del Po del 1951 e del 1966 (che non si limitò all’Arno!) hanno riguardato estesi bacini investiti da precipitazioni diffuse e continue, mentre quelle attuali sono il  riusultato di piogge fortissime in un luogo limitato e per un tempo limitato.
Oltre al riscaldamento globale (che ha aumentato a dismisura le temperature delle acque del Mediterraneo, facilitando l’evaporazione) è possibile che le modalità di svolgimento degli eventi degli ultimi anni siano correlate alla presenza di una AMO particolarmente alta, mentre le grandi alluvioni possano coprrispondere a valori della AMO più bassi.
COROLLARIO SU QUESTI GIORNI. Con questo non voglio entrare nel tema “l’estate sarà calda o fredda”: queste cosiddette previsioni mi lasciano piuttosto perplesso.
Però mi domando se il tempo di questi primi giorni di giugno, contrassegnato da forti pioggie e temperature abbastanza basse rispetto alla media sia una conseguenza della attività solare particolarmente scarsa che stiamo osservando, dato che come si vede in questo grafico della NOAA, anche la NAO è particolarmente bassa
[1] Knudsen et al (2014). Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nature communications DOI: 10.1038/ncomms4323J
[2] Jones et al (1997). Extension to the North Atlantic Oscillation using instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 1433–1450
[3] Scaife et al (2013). A mechanism for lagged North Atlantic climate response to solar variability. Geophysical Research Letters 40, 434–439
[4] Zanchettin, A. Rubino, P. Traverso and M. Tomasino 1,2 (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. Journal of Geophysical Research, vol. 113, D12102, doi:10.1029/2007JD009157
[5] Ferrari et al (2013) Influence of the North Atlantic Oscillation on winter rainfall in Calabria (southern Italy) Theor Appl Climatol 114:479–494 DOI 10.1007/s00704-013-0856-6
[6] Zezere et al (2005): Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 5, 331–344, 2005
[7] Piraino e Roig-Junent (2013) North Atlantic Oscillation influences on radial growth of Pinus pinea on the Italian mid-Tyrrhenian coast. Plant Biosystems http://dx.doi.org/10.1080/11263504.2013.770806
[8] Canuti et al 1985: Correlation between rainfall and landslides, Bulletin International Association Engineering Geology, 32, 49–54

La prova che il Sole ha sempre avuto una notevole influenza sui cambiamenti climatici

Abreu et al. [2012] scrivono nel loro documento :

” Il parametro che meglio rappresenta il ruolo del campo magnetico solare e i raggi cosmici [e di conseguenza, il livello generale dell’attività solare] è il potenziale della modulazione solare, che può essere derivato sia dal berillio 10Be o dei tassi di produzione del carbonio C14 “.

e

“…. l’analisi spettrale [del potenziale della modulazione solare nel corso degli ultimi 9400 anni] individua una serie di periodicità distinte (Stuiver & Braziunas 1993), ad esempio 88 anni (Gleissberg), 104 anni, 150 anni, 208 anni ( de Vries), 506 anni, 1000 anni (Eddy), e 2200 anno (Hallstatt) [cicli] … “

Ring_Comparison

La figura in alto nel seguente diagramma mostra la trasformata di Fourier della variazione della modulazione solare potenziale negli ultimi 9400 anni [Abreu et al. 2012]. Questo dato dimostra che il potenziale ha dei distinti picchi spettrali a 88 anni (ciclo di Gleissberg ), 104 anni, 133 anni, 150 anni, 210 anni (ciclo di de Vries Cycle), 232 anni, 356 anni e 504 anni.

Sotto, nella seconda figura, è mostrato lo spettro di ampiezza delle variazioni delle serie storiche della temperatura nel Nord America (negli ultimi ~ 7000 anni). La serie storica della temperatura è ottenuta dai dati degli anelli dei pini nell’altopiano del sud Colorado  [per i dettagli della fonte di questi dati si veda: Potrebbe essere questa la pistola fumante del clima ? da Salzer e Kipfmeuller (2005). La figura in basso mostra chiaramente i picchi spettrali a circa 88, 106, 130, 148, 209, 232, 353 e 500 anni.

Questa sembra essere una forte evidenza che il Sole ha sempre avuto una notevole influenza sulle condizioni climatiche [come la temperatura] a livello regionale.

Allora… perché molte persone continuano ad ignorare la connessione Sole – Clima ?

Nota: La figura in alto è stata creata atttraverso la digitalizzazione della figura 5a da Abreu et al. [2012]. Mentre il dato di fondo è stato ricreato dalla digitalizzazione di una parte della figura 3a di Ron et al. [2012].

Riferimenti

1. Is there a planetary influence on solar activity?
J. A. Abreu, J. Beer, A. Ferriz-Mas; K. G. McCracken, and F. Steinhilber.
A&A 548, A88 (2012)

2. Solar Excitation of Bicentennial Earth Rotation Oscillations.
Cyril Ron, Yavor Chapanov and Jan Vondrak
Acta Geodyn. Geomater., Vol. 9, No. 3 (167), 259–268, 2012

3. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau.
Salzer, M.W. and Kipfmueller, K.F.: 2005,
U.S.A. Climatic Change, 70, No 3, 465–487

Fonte : http://astroclimateconnection.blogspot.it/2016/03/evidence-that-sun-has-always-had.html

Tendenze … sul revisionato conteggio delle macchie solari

Qualche settimana fa … è uscito un piccolo ma interessante post sul blog di Antony Watts. Tre semplici grafici sul revisionato conteggio delle macchie solari, che dicono …

Nascosta fra i numeri delle macchie solari, troviamo la tendenza della nostra stella nel lungo termine.  Quello che osserviamo è che le macchie solari sono aumentate di un punto percentuale dal 1700.  Questo ci suggerisce che abbiamo avuto un continuo recupero dalla piccola era glaciale, dal 1660 al 1710. Inoltre i grafici sopra riportati evidenziano (tendenza) il notevole aumento delle macchie solari registrato dal 1940 al 2002. Periodo … che sappiamo tutti essere in stretta coincidenza con l’aumento della CO2 atmosferica. Tutto questo ci suggerisce che la correlazione fra la temperatura e la CO2 è spuria, piuttosto che causale.

Fonte : https://wattsupwiththat.com/2016/05/03/trend-in-the-revised-sunspot-number-dataset/

Correlazione tra la modulazione di 20 e 60 anni della temperatura globale e le equivalenti componenti armoniche della velocità del Sole intorno al baricentro del sistema planetario

di Antonio Bianchini  1,2 – Franco Milani 3 – Nicola Scafetta 4 – Sergio Ortolani 1

1) Department of Physics and Astronomy, University of Padova, Italy
2) INAF, Istituto Nazionale di Astrofisica (National Institute of Astrophysics)
3) Astronomical Association Euganea, Padova, Italy
4) Department of Earth, Environmental and Resources Science, University of Napoli Federico II, Napoli, Italy

Riassunto

Utilizzando un filtraggio a cascata di Fourier basato sulla valutazione residua dei più significativi picchi spettrali de-trend della registrazione della temperatura superficiale globale dal 1850 al 2015,  mostriamo che quest’ultimi sono caratterizzati da una grande modulazione di periodo 60 anni e una più piccola di 20 anni. I massimi delle oscillazioni di 20 anni si verificano in corrispondenza delle date di congiunzione Giove-Saturno e i massimi del ciclo di oscillazione di 60 anni coincidono con quelle congiunzioni, nelle quali la distanza del Sole da Giove e Saturno è più breve. Utilizzando lo stesso filtraggio a cascata di Fourier abbiamo confrontato queste oscillazioni della temperatura, con le periodicità che caratterizzano il moto del Sole sul baricentro del sistema solare nello stesso periodo. La modulazione della temperatura di 60 anni sembra essere correlata in fase con l’equivalente componenti armoniche della velocità solare e il momento angolare se con un ritardo di circa 5-10 anni. I massimi della modulazione di 60 anni della registrazione della temperatura si verificano circa nel 1880, 1940 e nel 2000. Fatta eccezione per il periodo iniziale 1850-1870 (in cui i dati sono incerti) tutti i picchi della temperatura della componente di 20 anni corrispondono ai massimi della velocità solare e alla modulazione del momento angolare con una buona correlazione di fase. La modulazione della temperatura di 60 anni è molto più grande di 20 anni, mentre la componente di 20 anni della velocità solare e del momento angolare sono molto maggiori di quelle di 60 anni. Tuttavia, una stima della funzione mareale gravitazionale generata da Giove e Saturno sul Sole batte con una importante oscillazione di periodo 60 anni, che è in fase con la corrispondente oscillazione di 60 anni della temperatura. Questi risultati suggeriscono che i meccanismi astronomici gravitazionali ed elettromagnetici possono modulare la temperatura globale. Il periodo 2000-2030 dovrebbe essere caratterizzato da una fase discendente dell’oscillazione della temperatura di 60 anni, sincronizzata con una fase di raffreddamento del sole indicando che l’attività solare potrebbe essere vicina ad un punto di ibernazione che può durare alcuni decenni.

Figura 1Figura. 1a) Anomalia della temperatura superficiale globale. b) Velocità del Sole attorno al baricentro del sistema planetario.

 

Figura 2Figura. 2Le componenti di 60 anni (residui) della (a) la velocità solare e (b) anomalie della temperatura. c) numero dele macchie solari (SSN) (punti neri) e significativo campo magnetico solare (G) (linea magenta).

 

Figura 3Figura. 3La funzione gravitazionale mareale di Giove e Saturno sul Sole. Il battiti dei massimi del ciclo di 60 anni, sono coerenti con la massima temperatura di 60 anni.

Figura 4Figura. 4 La componente di 20 anni (residua) della (a) velocità solare e (b) le anomalie della temperatura sono ben correlate. c) il numero macchie solari (SSN) (punti neri) e il campo magnetico solare (G) (linea magenta) non sono correlati con l’oscillazione di 20 anni della temperatura. I picchi della velocità verificarsi durante le congiunzioni fra Saturno e Giove (linee verticali nere).

……..

I dati della temperatura superficiale globale sono quelli del Climatic Research Unit (HadCRUT4) e le posizioni del sole attorno al baricentro del sistema solare e i dati orbitali sono stati calcolati utilizzando un nuovo programma che implementa i file DE430 e DE431 del Jet Propulsion Laboratory.

Scafetta, N., 2012. Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity
relation. Journal of Atmospheric and Solar-Terrestrial Physics 81-82, 27-40.
Scafetta, N., 2012. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the
11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics 80, 296-311.

 

Fonte : http://meetingorganizer.copernicus.org/EGU2016/EGU2016-9861.pdf

Raggi cosmici e copertura nuvolosa un nuovo documento scientifico

Anomalia della copertura nuvolosa alle medie latitudini: i collegamenti con le dinamiche troposferche e la variabilità solare

di S.Veretenenko e M.Ogurtsov

doi: 10.1016/j.jastp.2016.04.003

Riassunto

In questo lavoro si sono studiati i legami tra l’anomalie delle nubi basse (LCA) alle medie latitudini, nel Nord e Sud del mondo e la variazione dei raggi cosmici galattici (GCR) utilizzati come proxy della variabilità solare su una scala temporale decennale. Si è dimostrato che questi collegamenti non sono diretti, ma realizzati attraverso l’influenza dell’attività solare e dei raggi cosmici nello sviluppo dei sistemi barici extratropicali (cicloni e depressioni) che formano il campo delle nuvole. La violazione di una correlazione positiva tra LCA e l’intensità GCR è stata osservata negli anni 1980 – 1990 e si è verificata contemporaneamente nel Nord e Sud del mondo nei primi anni 2000, ed è coincisa con l’inversione di segno dei GCR sulla circolazione troposferica. È stato suggerito che un possibile motivo per l’inversione della correlazione tra l’attività ciclonica alle medie latitudini e il flusso dei GCR, è il cambiamento dell’intensità del vortice polare stratosferico che influenza in modo significativo l’accoppiamento troposfera-stratosfera. Le prove del notevole indebolimento dei vortici polari nella regione artica e nella stratosfera antartica nei primi anni 2000 sono forniti. I risultati ottenuti suggeriscono un ruolo importante dell’evoluzione vortice polare come motivo della variabilità temporale degli effetti dell’attività solare sulla bassa atmosfera.

low-cloud-cover-and-cosmic-raysVariazione temporale della LCA [anomalia della bassa copertura nuvolosa] e GCR [flusso dei raggi cosmici galattici] (valori mensili Detrended) per l’emisfero Nord (a) e Sud (b). Le linee spesse sono una media consecutiva di 12 mesi della LCA; c) i coefficienti di correlazione tra i valori annuali della LCA e il flusso dei raggi cosmici GCR per gli intervalli di 11-yr nel nord (linea continua) e meridionale (linea tratteggiata) emisfero. Le linee tratteggiate mostrano i livelli di significatività: 0,95 (curve 1) e 0.99 (curva 3) per l’emisfero settentrionale; 0.99 (curva 2) per l’emisfero sud

 

Fonte : http://www.sciencedirect.com/science/article/pii/S1364682616300979