Archivi categoria: CONOSCENZE BASE SOLE

Osservare il sole in sicurezza.

Qui su NIA, quasi ogni giorno sentiamo parlare di cicli solari, di osservatori solari che  vedono macchie  più di altri o che le contano male..   Tutto questo oramai  fa parte del  folclore di questo blog … … ma probabilmente in pochi hanno avuto la possibilità di osservare con il propri occhi le macchie solari  con uno strumento.

Ecco un metodo abbastanza semplice su come si possono osservare le macchie solari in modo sicuro. Il materiale occorrente é costituito da un binocolo un cavalletto fotografico, un adattatore per binocolo e con dei pezzi di cartone e cartoncino e un pò di pazienza!

Una cosa scontata ma la prudenza non é mai troppa:

!!! ATTENZIONE  NON OSSERVATE MAI IL SOLE DIRETTAMENTE CON IL BINOCOLO !!!.

 

L’energia solare concentrata dalle lenti é sufficiente a provocare danni permanenti anche gravi all’ occhio .

Inoltre la tecnica può essere usata solo con strumenti aventi un obbiettivo non troppo grande. Con un  telescopio é bene diaframmare l’ obbiettivo e portarlo a un diametro di circa 50 mm. La lente e soprattutto lo specchio potrebbero concentrare la luce all’ esterno e bruciare qualcosa … mi ricordo di aver visto i risultati di una avventata apertura della cupola di giorno di un telescopio del diametro di oltre un metro …

La cosa più difficile da trovare é l’adattatore per il cavalletto fotografico e inoltre con alcuni alcuni binocoli la cosa non é tanto semplice.

L’ adattatore per il binocolo é forse la cosa più difficile da trovare …

Il funzionamento é abbastanza semplice useremo il binocolo come un proiettore e il disco solare verrà proiettato su un cartoncino bianco ad una certa distanza.

Si prende un cartone da imballaggio abbastanza robusto sul quale faremo un foro leggermente più piccolo della dimensione dell’ obbiettivo, in modo tale che rimanga bloccato sull’ obbiettivo.

Schermo parasole vista frontale

lo scopo di questo cartone é quello di oscurare una lente e quella di proiettare un ombra, in questo  modo l’ immagine del disco solare sarà più contrastata.

Schermo parasole vista retro

Come schermo utilizzeremo un foglio di carta bianca incollato o fissato in modo da non fare troppe ondulazioni su un cartone…

Una volta assemblato il nostro aggeggio, bisogna puntare il binocolo in direzione del sole. La cosa non é molto semplice. Per motivi di sicurezza non possiamo mettere l’ occhio all’oculare per non “friggere” o “lessare” l’ occhio, ma dopo qualche tentativo vedremo apparire in terra un ovale luminoso, a questo punto  avviciniamo lo schermo di osservazione dietro l’ oculare e lo orientiamo in modo tale da rendere il disco circolare. A questo punto  possiamo mettere a fuoco o avvicinare allontanare lo schermo in modo da ottenere l’ immagine nitida e osservare … e se  la fortuna ci assiste dovremmo vedere qualche macchietta !

Da questa orrenda foto del disco solare proiettato su un foglio di carta si riesce a intuire la presenza di una macchia solare sulla destra (21 09 2010)

Non perdete questa occasione,  perché probabilmente, dopo questo massimo solare sarà molto difficile vedere delle macchie in questo modo per chissà quanti decenni.

Buona sperimentazione, buon divertimento … e state attenti agli occhi mi raccomando!

Gabriele Santanché  … aka Luci0 … gabsan!

Evoluzione a lungo termine dei campi magnetici delle macchie solari (traduzione studio L&P)

Questo è anche il titolo dell’ultimo lavoro di Linvingston & Penn, datato 3 settembre 2010, che sembra confermare l’involuzione dell’attività magnetica del nostro Sole.

Ma se da un lato questi autori forniscono dei dati esplosivi sul futuro della nostra stella, dall’altro richiamano alla prudenza nell’interpretare i dati raccolti nel loro studio, in questo dimostrando la saggezza dei veri scienziati.

In particolare viene confermato che, indipendentemente dal ciclo solare, vi è una progressiva diminuzione della forza del campo magnetico delle macchie solari rivelato dai dati spettroscopici (sdoppiamento Zeeman emesso dagli atomi del ferro nell’atmosfera  del Sole quando sono attraversati da un campo magnetico) ottenuti dalla banda di emissione del ferro a 1564.8nm e ricavati utilizzando il telescopio McMath-Pierce di Kitt Peak del National Solar Observatory (NSO) in Arizona.

Il telescopio McMath-Pierce di Kitt Peak (Arizona)

Introduzione e tesi degli autori

Questa diminuzione progressiva dei campi magnetici delle macchie solari era un dato già rilevato nei loro precedenti lavori. Questa tendenza viene di nuovo confermata anche nella prosecuzione delle osservazioni sulle macchie solari del nuovo ciclo solare 24.

La novità di questo lavoro è che hanno anche osservato una perfetta corrispondenza tra le variazioni di luminosità delle macchie solari e l’intensità della banda di assorbimento molecolare.

Estrapolando una linea sul grafico di questa tendenza, Livingston e Penn hanno concluso che ciò potrebbe portare alla metà del numero di macchie solari nel ciclo 24 rispetto al ciclo di 23, e praticamente alla scomparsa delle macchie solari nel ciclo solare 25.

Gli stessi autori nello stesso lavoro hanno anche esaminato le osservazioni sinottiche ricavate dal Kitt Peak Vacuum Telescope del NSO, inizialmente con 4000 punti di risoluzione, ed hanno trovato una variazione di luminosità delle macchie solari che grossomodo concordano con le osservazioni eseguite ai raggi infrarossi.

Ad un esame più dettagliato con 13.000 punti, sia la luminosità in loco sia le linee di emissione del flusso magnetico rivelano che il rapporto tra campi magnetici delle macchie solari e la luminosità e le dimensioni delle stesse macchie rimangono costanti durante l’intero ciclo solare. Ma compaiono anche rare piccole variazioni temporali di luminosità, in base alla zona e alla dimensione, che poste in rapporto alle linee di flusso magnetico, possono essere osservate in questo campione decisamente più ampio.

A causa di questo piccolo disaccordo apparente tra i due insiemi di dati, Livingston e Penn discutono ampiamente nel loro lavoro se la linea spettrale all’infrarosso può essere l’unica valida misurazione diretta dei campi magnetici nelle macchie solari.

Sebbene le loro osservazioni siano iniziate già nel 1990, fondamentalmente  la loro attenzione si era incentrata solo sulle macchie solari di più grandi dimensioni visibili sul disco solare. Nel corso degli ultimi 10 anni queste osservazioni sono diventate molto più analitiche e in più si sono estese a tutte le più piccole macchie visibili, dai più minuti pori alle macchie più estese con ampia penombra.

Successivamente Livingston ha rimontato i propri dati ottenuti nella banda dell’infrarosso confrontandoli con quelli della luminosità presente sul MDI Continuum.

Già nel 2006 Penn e Livingston avevano riportato che i dati del campo magnetico rilevato con la spettroscopia all’infrarosso dimostravano una diminuzione della forza del campo magnetico delle macchie solari, assolutamente indipendente dalla fase delle macchie nel ciclo solare.

Inoltre, le misurazioni a suo tempo avevano rivelato una soglia di intensità del campo magnetico per produrre una macchia di circa 1500 Gauss, sotto alla quale i pori che si erano formati non davano più luogo a delle macchie. Una estrapolazione lineare sul grafico dell’andamento generale del campo magnetico delle macchie solari aveva suggerito che l’intensità media del campo avrebbe raggiunto questo valore soglia  di 1500 Gauss per l’anno 2017.

Questa volta, prendendo in esame anche l’analisi della luminosità delle macchie nel continuum, si è osservato, inoltre, un pari andamento lineare, e l’estrapolazione dei dati ha dimostrato che la luminosità delle macchie va a pari passo con la luminosità costante del Sole nello stesso anno.

Infine, la profondità della linea molecolare emessa dal Sole ha dimostrato una diminuzione della sua forza con il progredire del tempo, e il nuovo andamento suggerisce ancora una volta che la linea di assorbimento molecolare scomparirà mediamente intorno al  2017.

Entrando in dettaglio in merito, Livingston & Penn fanno notare i numerosi dati che testimoniano il notevole avanzamento dell’attuale ciclo, dall’oscillazione torsionale al numero di macchie e alla loro migrazione, riportata da altri autori e tracciano il parallelo esistente tra il ciclo 23 ed il 24 nell’evoluzione temporale, anche se con dati molto più al ribasso per il ciclo 24.

Ossia i due cicli appaiono confrontabili nella loro estensione, anche se il ciclo 24 appare, molto, ma molto più debole in intensità.

Questo confronto nei calcoli di Livingston e Penn, ci suggerisce che il giugno 2010 (ciclo 24) corrisponde al febbraio 1998 del ciclo 23 ed è molto  istruttivo esaminare i numeri di macchie solari mensili presenti rispettivamente in questi due mesi: nel febbraio 1998 il valore era 40, e nel giugno 2010 tale valore è sceso a 13.

Se osserviamo anche i 5 mesi che precedono questi periodi, troviamo che per un periodo di sei mesi il ciclo 24 ha mostrato solo 0,37 volte il numero di macchie visto nel ciclo 23.

Con la correzione della fase dei cicli solari, stiamo assistendo ad un numero di macchie solari di gran lunga inferiore a quanto visto nel precedente ciclo. In definitiva il ciclo solare 24 produce un numero insolitamente basso di ampie macchie dotate di penombra e perfino di pori.

Fig 1: Le misurazioni della forza totale del campo magnetico nella porzione più scura dell’ombra delle macchie solari e dei pori in funzione del tempo. Le croci indicano le misure individuali, gli asterischi indicano la media annuale. Vi sono tre linee che indicano le medie e la loro estrapolazione: la linea più bassa è quella ricavata dai dati del 1998-2006, come pubblicato nel lavoro scientifico di Livingston e Penn del 2006.

La linea superiore comprende tutti i dati ricavati solo dal ciclo 23, e la riga centrale comprende tutti i dati raccolti (ciclo 23 e 24).

Quali i risultati grafici delle osservazioni recenti

La figura 1 mostra le osservazioni sui campi magnetici delle macchie solari e dei pori ricavati dai dati delle misurazioni eseguite personalmente da Livingston.
La forza totale del campo magnetico nella zona più buia dell’ombra delle macchie solari e dei pori è in funzione del data della misurazione. Le misurazioni sono indicate come crocette. Vi è un’ampia distribuzione delle crocette riguardanti la forza dei campi magnetici visibili sulla fotosfera solare, ma sembra esserci una soglia più bassa per la formazione di macchie solari molto scure o pori via via che avanza il tempo.

Nessuna misurazione dimostra che la forza del campo magnetico totale è inferiore a circa 1500 Gauss nella parte più scura della macchia, e presumibilmente regioni con la massima intensità di campo magnetico inferiore a questo valore non vengono sottoposti a collasso convettivo.

Nella figura 1 le medie annuali delle misurazioni vengono anche visualizzate come degli asterischi, e la deviazione standard dalla media appare come una barra verticale (di errore di calcolo) posta sugli asterischi.

Sono anche indicate in questa figura diverse estrapolazioni delle funzioni lineari ricavate.

La linea (funzione lineare) posta più a sinistra (n.d.r. la più bassa) mostra il risultato del lavoro svolto da Penn e Livingston  nel 2006; la estrapolazione della linea mostra un’intercetta con il valore di 1500 Gauss nel 2017, e sono anche indicate le barre di deviazione standard (errore di calcolo) del punto di intercetta.

La linea più a destra comprende tutti i dati delle osservazioni di Livingston riguardanti il ciclo 23, comprendenti anche quelli derivati dalle misurazioni dei campi magnetici dal 2007 fino al 2008.

Questa ultima linea sposta l’intercetta dei 1500 Gauss al 2022.

La linea centrale comprende tutti i dati, comprese le misurazioni del ciclo 24, e la data di intercetta sembra essere nel 2021, ma tale data è anche compresa all’interno delle barre di errore (deviazione standard) dei dati ottenuti dalle macchie solari del ciclo 23.

In ogni caso le linee tracciate per tutti i dati dimostrano comunque una diminuzione di circa 50 Gauss all’anno dell’intensità del campo magnetico nella porzione di più intensa oscurità delle macchie solari.

E ‘importante notare che sia le macchie solari che i pori sono inclusi in questo studio.

I pori, ai quali manca la penombra, possiedono spesso una forza di campo magnetico inferiore ai 2000 Gauss, ma comunque sempre più forte del valore soglia del campo magnetico di 1500 Gauss.

In secondo luogo, l’intercetta con questo valore soglia di 1500 Gauss nella forza media del campo magnetico non implica che tutte le macchie solari scompariranno entro il 2021, ma implica che la metà delle macchie solari che normalmente appaiono sulla superficie del Sole saranno ugualmente visibili.

Infine, il grafico non tratta degli altri campi magnetici sul Sole, ossia laddove il campo magnetico è di potenza inferiore a 1500 Gauss,  e non considera neppure il comportamento nel tempo dell’irradiazione solare costante e priva di tempeste magnetiche superficiali, che potrebbe essere molto diversa dal comportamento dimostrato dalle macchie solari.

Il supporto dei dati ricavati da altri studi

Successivamente Livingston e Penn si lanciano nell’illustrare i problemi affrontati nel confrontare i dati ricavati dalla spettrografia a infrarossi con la misurazione della luminosità delle macchie solari ricavate dal MDI Continuum, cercando il parallelo con altri autori, ma vorrei risparmiarvi questa parte, che comunque appare molto critica.

Vorrei solo farvi porre l’attenzione su alcune frasi, come di seguito discusso da Livingston e Penn: “Misurare la vera forza del campo magnetico nelle zone più oscure delle macchie solari o dei pori è conosciuto per essere un compito molto difficile, in quanto i livelli di luminosità sono bassi e le profondità delle linee di forza sono piccole (Liu, Norton & Scherrer 2007). Però utilizzando misurazioni simultanee (n.d.r. spettrografia ad infrarossi e MDI Continuum) su una macchia solare di grandi dimensioni (Hinode and MDI, Moon et al., 2007) si dimostra che le osservazioni MDI possono sottovalutare la forza del campo magnetico di un fattore pari a due. Le immagini del magnetogramma hanno diversi vantaggi in termini di cadenza di osservazioni e di integrità spaziale delle immagini, ma gli strumenti come lo spettrografo riescono a catturare i profili completi delle macchie più scure ed hanno maggiori vantaggi in termini di accuratezza”.

Livingston e Penn propongono a questo proposito un altro grafico con il quale, in base ai loro dati e con una proiezione statistica, suggeriscono l’evoluzione dei cicli successivi al 23.

Fig. 2 .- La funzione di probabilità di distribuzione del campo magnetico (PDF) mostra le misurazioni agli infrarossi delle macchie solari durante il ciclo 23. Con l’ipotesi discussa nel testo, si può produrre un PDF per i cicli 24 e 25, ossia con una semplice proiezione ottenuta utilizzando il numero totale delle macchie solari rilevate precedentemente che suggerisce che si raggiungerà il picco del ciclo 24 con un SSN di 66, mentre si raggiungerà il picco del ciclo 25 con un SSN di 7.

Quali implicazioni per il futuro

Come suggerito dalla Figura 1, la dettagliata analisi mostra che le macchie solari misurate durante la fase di ascesa del ciclo 24 hanno la stessa distribuzione dei punti nella forza dei campi magnetici del ciclo 23, ma il valore medio della distribuzione è ridotto.
Si tratta di una prudente conclusione ricavata dalle osservazioni di Livingston.

Bisogna comunque fare tre osservazioni:

1)      Prima di tutto bisogna capire che le osservazioni di Livingston  del 1998-2008 nella distribuzione dei campi magnetici è la fonte principale per la funzione di probabilità di distribuzione del campo magnetico (PDF) delle macchie solari del Ciclo di 23.

2)      In secondo luogo, si assume che la soglia di campo magnetico di 1500 Gauss rappresenta un limite fisico reale per la formazione di una macchia (un poro o una macchia solare) sulla fotosfera.

3)    Infine, si assume che la media dei campi magnetici per il calcolo del PDF continuino a diminuire linearmente con di tempo.

La Figura 2 mostra la funzione di probabilità di distribuzione del campo magnetico (PDF) calcolata per le macchie solari nei cicli di 24 e 25, considerando una diminuzione lineare del campo magnetico di 65 Gauss all’anno per una durata di 11 anni per ogni ciclo.

Questo vuole rappresentare un limite superiore, e il cambiamento magnetico corrisponde al picco della linea più inclinata in Figura 1. Possiamo vedere che i PDF per il Ciclo 24 e il 25 sono drasticamente diversi da quello osservato nel ciclo 23.

Se assumiamo che il tempo di comparsa delle macchie solari durante ogni ciclo è simile, si può utilizzare il numero totale di punti in ogni ciclo per calcolare il livello massimo di attività di tale ciclo, utilizzando il fatto che il ciclo 23 ha dimostrato un picco SSN di 130.

La diminuzione lineare di 65 Gauss per anno prevede che si raggiungerà il picco del ciclo 24 con un SSN di 66, e si raggiungerà il picco del ciclo 25 con un SSN di 7.

Se però utilizziamo un valore di decremento di 50 Gauss all’anno si prevede un SSN di 87 per ciclo 24 e di 20 per il Ciclo 25.

E ‘importante notare che è sempre rischioso estrapolare le tendenze lineari, ma l’importanza delle implicazioni di tale ipotesi giustifica questa azione.

Testualmente Livingston e Penn concludono: “Degno di nota è che il PDF, appena illustrato in grafico, deriva direttamente dalle osservazioni di Livingston che si dimostrano il mezzo più affidabile per la valutazione del campo magnetico delle macchie solari.

Si osserva, al contrario, che una macchia solare con una intensità di campo magnetico di 4200 Gauss è stata osservata nel ciclo 23 (NOAA 10.930, Luna et al. – 2007)), ma ciò non è stato osservato anche da Livingston e non compare in questa analisi.

Così la macchia solare apparsa di recente nel ciclo di 24 (NOAA 11.092, agosto 2010) con una intensità di campo magnetico di 3350 Gauss non invalida questi presupposti.

Certo, se un gran numero di macchie solari con intensità di campo magnetico superiore a 3000 Gauss comparissero, verrebbe dimostrato che il nostro PDF è errato.

Vedremo se nei prossimi mesi e anni le misure di campo magnetico a 1564.8nm dimostreranno differenze tra la fase di decadimento del ciclo 23 e la fase di ascesa del ciclo 24, implicando che i prossimi due cicli di macchie solari potrebbero essere molto diversi dal precedente.

Le osservazioni con i magnetogrammi ricavati dalla luce visibile non danno un significativo sostegno alle nostre affermazioni. Pertanto riteniamo indispensabile continuare le osservazioni seriali con questa particolarmente utile tecnica ad infrarossi (1564.8nm) per determinare se queste tendenze nel comportamento delle macchie solari troveranno conferma”.

Così concludono Livingston che, molto elegantemente, esprimono anche una piccola critica alle misurazioni del NOAA al quale non sembrano esprimere una stima sconfinata.

Certo le loro previsioni si basano sull’estrapolazione della funzione lineare ricavata dai loro dati, ma si tratta di dati rigorosi registrati in quasi 20 anni con una metodica molto rigorosa e che non ha presentato alcuna variazione inaspettata.

È difficile credere che William Livingston e Matthew Penn non abbiano una propria teoria sulla ragione di questa progressiva diminuzione di forza del campo magnetico delle macchie solari, ma preferiscono non avventurarsi su un terreno minato che potrebbe far perdere autorevolezza al loro lavoro e che ha già fatto delle vittime illustri.

In ogni caso chiedo scusa per l’eventuale sintesi eccessiva, in alcune parti di questo elaborato, di concetti difficili da esemplificare, ma ho cercato di rendere comprensibile a tutti un lavoro scientifico che ritengo basilare per la conoscenza del futuro del nostro Sole.

Traduzione e sintesi di Pablito

Fonte: Cornell University Library – Astrophysics – “Long-term Evolution of Sunspot Magnetic Fields“,Matthew Penn & William Livingston, (Submitted on 3 Sep 2010)

( http://arxiv.org/abs/1009.0784v1 )

Pdf:   http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.0784v1.pdf

Precedenti lavori discussi qui: http://www.salviamoci2012.eu/LivingstonPenneloStregattosolare.htm

CONOSCENZE BASE DEL SOLE 10) EVOLUZIONE E FINE DEL SOLE. (NON PERDETEVI DOMANI SUPER ARTICOLO DI PABLITO CHE DIMOSTRERA’ L’INEDEGUATEZZA DEI CONTEGGI MODERNI RISPETTO A QUELLI PASSATI!)

Il Sole é una stella con una piccola massa e , in accordo con la sua fase di evoluzione, le sue dimensioni e luminositá, si presnta come una volgarissima stella. Nel momento attuale si trova nella sua fase detta di sequenza principale , caratterizzata dal fatto di avere la sua energia attraverso reazioni di fusione dell´idrogeno in elio e, data la sua piccola massa, appena arriverá alla fase di combustione dell´elio in carbonio, cessará cosí la sua evoluzione in termini di fusione nucleare. Le differenti fase dell´evoluzione della stella possono essere caratterizzate ricorrendo a un diagramma che relaziona la temperatura effettiva a la rispettiva luminositá (diagramma di Hertzsprung-Russell – HR).

Diagramma di Hertzsprung-Russell che relaziona la temperatura allasuperfície della stella con la rispettiva luminositá o magnitudine assoluta.

Il processo di formazione di una stella come il Sole ha inizio in una nube di gas molecolare. Per instabilitá gravitazionale si comincia in una regione di questa nube, un processo di aggrgazione della massa per una zona centrale che risulterá nella formazione di una proto-stella. Questo processo di instabilitá gravitazionale é causato da onde di shock che attraversano la nube, essendo normalmente associate ad esplosioni di supernove nella vicinanza. Per effetto della gravitá il gas si agglomera in un nucleo centrale la cui temperatura aumenta gradualmente nella misura in cui la sua massa aumenta e si contrae.

Processo di formazione (inizio). La nube di gas (a) per instabilitá gravitazionale provocata per onde di shock associate a esplosioni di supernove (b) inizia un processo di aggrgazione di massa che piú tardi dará origine alla nuova stella (c).

Per conservazione del momento angolare della nube iniziale di materia, il processo di aggrgazione dá origine ad un disco di aggregazione dove si formano i pianeti. La fase di proto-stella termina quando il nucleo centrale é sufficientemente luminoso (dovuto alla contrazione e alle reazioni di fusione del deuterio) per allontanare la nube avvolgente, per un processo di pressione radiativo, entrando intanto nella fase di evoluzione di pre-sequenza principale.

Per effetto gravitazionale il gas della nube comincia ad agglomerarsi ...
... in un nucleo centrale (proto-stella) la cui temperatura aumenta gradualmente, nella misura in cui aumenta la sua massa aumenta e si contrae...
...formando un disco di aggrgazione dove si formano i pianeti.

In questa fase, il nucleo centrale continua rapidamente a contrarsi, usando essenzialmente l´energia gravitazionale da contrazione per riscaldarsi. Anche se la proto-stella é totalemte convettiva (dovuto alla sua bassa densitá e temperatura), con la contrazione il suo nucleo centrale diventa radiativo, aumentando la temperatura effettiva. Con l´aumento della densitá e della temperatura nel suo centro, presto questa ultima arriva avalori dell´ordine di 2 X 107 K, e comincia a diventare possibili le reazioni di fusione dell´idrogeno, timbrando cosí la nascita della stella. Entra intanto in una lunga fase di equilibrio – la sequenza principale – che dura fino a che esiste idrogeno per le reazioni di fusione.

la fase di proto-stella termina quando il nucleo centrale é abbastanza luminoso (dovuto alla contrazione e alle reazioni di fusione del deuterio) per allontanare la nube avvolgente.
Variazione della % degli elementi idrogéno e élio con il tempo

Durante la fase della sequenza principale non avvengono grandi mutamenti nelle proprietá globali come luminositá e raggio. Esiste appena un leggero aumento della luminositá in rapporto alla diminuzione dell´idrogeno nel nucleo, obbligando la stella ad adattarsi. Come risultato della combustione dell´idrogeno, la stella vá accumulando nel suo centro l´elio che risulta dalle sue reazioni di fusione, creando cosí un un nucleo inerte di questo elemento. L´aumento continuo del nucleo obbliga la stella ad adattarsi rapidamente per aggiustare le condizioni di produzione di energia che necessita per mantenere il suo equilibrio idrostatico. Come la massa del nucleo di elio diventa troppo elevata, la gravitá porta a che questa si trasformi in una sfera di gas degenerato, e nello stesso tempo diminuisce di diemnsione. Entriamo cosí in una fase in cui l´energia prodotta aumenta progressivaente in risposta alla contrazione del nucleo.

Il fine della sequenza principale corrisponde alla fase in cui la produzione di energia ha luogo in uno strato attorno al nucleo. Lí é prodotto piú elio che continuerá ad essere immagazzianto nel nucleo centrale.

La fine della sequenza principale corrisponde alla fase in cui la produzione di energia ha luogo, non nel centro, ma in uno strato attorno al nucleo. Lì é prodotto piú elio che continuerá ad essere immagazzinato nel nucleo centrale. Si ha cosí inizio ad una fase di instabilitá che porta la stella ad alterare tutta la sua struttura in una scala di tempo abbastanza breve. La stella si adatta al fatto di produrre energia appena in uno strato che avvolge il nucleo ma comincia ad alterare la sua luminositá e temperatura effettiva, per cui questa si muove nel diagramma H-R a destra della zona corrispondente alla sequenza principale, entrando in una fase di gigante rossa.

Fase di gigante rossa. L´espansione dell´involucro gassoso conduce ad una diminuzione della temperatura effettiva diventando la stella un un gigante rosso.

Nella misura in cui il nucleo di gas degenerato soggetto alla sua gravitá si contrae, per aumento della massa, trascina con sé gli strati ricchi in idrogeno che lo avvolgono per zone piú interne, portando ad un aumento del flusso di energia prodotta per fusione. In questo modo l´involucro della stella é obbligato a espandersi con una corrispondente diminuzione della temperatura effettiva dando origine a una gigante rossa.

Ramo assintóttico delle giganti. Nella fase finale della combustione dell´elio, la stella possiede un nucleo inerte di carbonio, seguito da uno strato di fusione di elio e da uno strato di fusione di idrogeno.

Ad un certo punto la stella ha giá perso una parte significativa del suo involucro gassoso, nella fase di espansione di gigante rossa, e il suo nucleo di elio finisce pe rarrivare a temperature sufficientemente alte per dare inizio alla combustione di questo elemnto in carbonio. Ha co´si luogo una “seconda” sequenza principale detta RAMO ORIZZONTALE. Dato che la reazione di fusione di elio in carbonio é meno efficiente di quella della fusione dell´idrogeno, la permanenza della stella in questa nuova fase di stabilitá (nel ramo orizzontale) sará molto piú corta di quella della fase di combustione dell´idrogeno, obbligando ancora una volta la stella ad evoluire.

Riassunto della nascita ed evoluzione di una stella tipo Sole.

Nella fase finale della combustione dell´elio, la stella possiede un nucleo inerte di carbonio, uno strato esterno a questo di combustione dell´elio e uno strato ancora piú esterno di combustione di idrogeno. Nuovamente con il crescimento del nucleo, adesso di carbonio, la stella acquisisce una configurazione instabile con la produzione di energia che deve aver luogo negli strati esterni. Entra cosí in una nuova fase denominato ramo assintottico delle giganti. La continua somma di massa nel nucleo porta ad una nuova fase di contrazione, in cui questo nucleo centrale trascina gli strati che lo avvolgono, risultando in un rapido aumento della produzione di energia e conseguentemente, in una nuova espansione del resto dell´involucro gassoso che ancora la avvolge. L´involucro si espande quando il gas é spinto dalla radiazione proveniente dalla elevata temperatura del nucleo che si contrae, finendo per portare la stella a perdere tutta la massa esterna nel nucleo centrale che passa ad evoluire separatamente, nella misura in cui il gas perso é restituito allo spazio interstellare. Risulta da questo processo la formazione di una nebulosa planetaria.

Evoluzione prevedibile per una stella del tipo G come il Sole

Alla fine del ramo asintottico dei giganti, quando l´involucro gassoso e perso, resta appena il nucleo centrale e la nube di materiae che é stata eiettata. Il nucleo, quasi solo di carbonio, é oltremodo piccolo, per cui la gravitá é incapace di iniziare la combustione di questo elemento, passando ad una fase di raffreddamentoman mano che perde energia termica, terminando cosí il processo di evoluzione. Il piccolo corpo sferico di carbonio degenerato che é rimasto dopo la contrazione del nucleo si chiama NANA BIANCA. Le dimensioni di questo corpo sono molto ridotte se comparate con la dimensione attuale del Sole, e la sua brillantezza si deve appena al calore che é rimasto dal processo di evoluzione e andrá ad essere progressivamente perduto raffreddando la nana bianca.

Percorso nel diagramma HR per una stella tipo il nostro Sole.

Finalmente, quando tutta l´energia térmica é rirradiata, la stella finisce di essere visibile diventando una nana-nera, questo é un diamante (carbonio cristallizato) perso nella Galassia.

SAND-RIO

CONOSCENZA BASE DEL SOLE 9c) ROTAZIONE E ATTIVITÀ: IL CICLO SOLARE.

L´attivitá nel Sole, le macchie, pori, facule, eruzioni ecc. si trovano intimamente legate con l´esistenza di regioni dove il campo magnetico é molto intenso. Questo campo ha origine sotto l´atmosfera, nell´interno di questa immensa massa di gas che gira atoorno a sé stassa creando elettroni e protoni i quali, animati dal movimento, danno origine ad una corrente elettrica che a sua volta induce un campo magnetico. Il Sole si comporta come se fosse una gigantesca dinamo.

La dinamo solare. Partendo da un campo poloidale limitato alle regioni polari (a), i segmenti di linea del campo situati all´equatore sono piú velocemente trascinati rispetto agli altri, risultando in un allungamento equatoriale e nell´apparizione di un campo toroidale (b). Si originano cosí campi molto concentrati, intensi e di aspetto opposto da un emisfero all´altro (c).

La rotazione del Sole, essendo differenziale (la regione equatoriale ruota piú velocemnete delle altre regioni) trasforma un campo magnetico poloidale (che va da un polo all´altro) poco intenso, ad un campo toroidale (parallelo all´equatore) molto intenso: la rapida rotazione all´equatore si mistura alle linee di forza formando linee magnetiche di elevata intensitá del campo. È in questo campo magnetico che si trova l´origine, per esempio, delle macchie, nella misura in cui inibisce la convenzione o l´apparizione di zone piú fredde nella superficie solare.

La rotazione differenziale e l´apparizione delle macchie solari. La rapida rotazione all´equatore miscela le linee di forza formando linee magnetiche di elevata intensitá di campo. Questo campo magnetico é all´origine delle macchie solari.

La dinamo solare sperimenta cambiamenti di regime periodici che si traducono in una variazione quasi regolare del numero delle macchie solari. Questa permuta tra minimi e massimi dell´attivitá caratterizza il CICLO SOLARE, che corrisponde ad un periodo di circa 11 anni (il periodo varia tra i 9 e i 12 anni e mezzo). La localizzazione dove le macchie sorgono nel disco solare varia anche con la fase in cui si trova il ciclo, apparendo a latitudini piú alte (piú vicine ai poli) all´inzio del ciclo, in quanto vicino alla fine la quasi totalitá delle macchie sorge vicino all´equatore.

Mínimo e mássimo della attivitá. Le figure mostrano l´aspetto del Sole tra le fasi di attivitá massima e di attivitá minima. Fonte: National Solar Observatory)

Il momento quando un grande numero di macchie si formano é detto MASSIMO SOLARE. L´intensiá nel massimo di ogni ciclo varia anche da ciclo a ciclo, esistendo epoche in cui l´attivitá é molto superiore, in contrasto con altre in cui quasi praticamente non si registrano fenomeni di attivitá nel Sole. Un esempio é il minimo di MAUNDER (periodo compreso tra il 1650 e il 1700) che corrisponde ad una fase in cui il Sole quasi non ebbe macchie durante vari cicli di attivitá, coincidendo con un abbassamento della temperatura media registrata in Europa nella stessa epoca.

Variazione della latitudine delle macchie solari e relazione con la fase del ciclo solare.

Le macchie appaiono normalmente associate in gruppi essendo legate tra loro dal campo magnetico. In ogni ciclo di 11 anni tutti i gruppi di macchie presentano un orientamento similare (per ogni emisfero) avendo sempre la macchia di ogni emisfero la stessa polaritá. Nella fase seguente, quando inizia il nuovo ciclo l´organizzazione delle polaritá é invertita. In questo modo torneremo alla stessa configurazione alla fine di 2 cicli consecutivi. Il ciclo completo quindi sará di circa 22 anni. Riassumendo, anche il numero di macchie varia con un periodo di circa 11 anni, la polaritá delle macchie si inverte alla fine di ognuno di questi periodi, per cui di fatto il ciclo magnetico completo dura 22 anni.

Il numero di macchie solari varia al lungo del tempo, oscillando tra un periodo di quasi assenza di macchie (minimo solare) ad un periodo con un elevato numero di macchie (massimo solare).

Il ciclo solare ha un effetto diretto su quello che succede nella superficie del Sole e colpisce tutto il sistema solare attaverso le differenti manifestazioni dell´attivitá che possono succedere dovuto alle macchie o fenomeni associati, come flares, prominenze e buchi coronali. In una fase piú attiva del ciclo solare il campo magnetico presenta piú e maggiori zone chiuse di campo, il che porta all´apparizione nella corona di piú regioni attive con temperature e densitá maggiori. Questo tipo di regioni é particolarmente visibile nelle immagini del Sole ai raggi X, perché le zone che emettono in questa lunghezza d´onda corrispondono precisamente a quelle dove si registra la maggiore temperatura. Queste zone sono il risultato diretto della struttura chiusa del campo magnetico associato all´attivitá nella superficie del Sole. È per questo motivo che l´aspetto della corona, vista durante una eclisse totale di Sole, é abbastanza differente, dipendendo dal momento in cui si osserva: la struttura presentata é molto distinta nel caso in cui il Sole sia in massimo o in un minimo del suo ciclo di attivitá. La struttura della corona diventa abbastanza piú ricca in altezza quando il Sole é piú attivo, essendo possibile identificare le zone del campo magnetico associate all´attivitá nella superficie, in quanto che nel minimo di attivitá l´aspetto é molto piú uniforme, corrispondendo ad una struttura piú semplice del campo magnetico.

Il Mínimo di Maunder. La figura mostra la variazione del número di macchie solari con il tempo. Tra circa il 1650 e 1700 praticamente non si registrarono presenze di macchie, difinendosi questo periodo come il Mínimo di Maunder. (Fonte: Harcourt,inc.)
Diagramma a farfalla. Il diagramma mostra la média diária dell´area della macchia per rotazione solare per ogni latitudine. Rivela anche la variazione del campo magnetico del Sole con il tempo e la reversione del campo con il periodo di 11 anni.

Gli effetti del ciclo solare possono anche essere sentiti sulla Terra e nel resto del Sistema Solare. Un esempio é il fatto che dei cambiamenti nella attivitá del Sole possono essere accompagnati da alterazioni nel vento solare, da cui la configurazione del campo elettromagnetico che circonda la Terra che puó esporre questa piú o meno all´effetto dei raggi cosmici. Quando questo succede, la produzione di carbonio -14 é alterata. Questo effetto puó essere misurato essendo possibile stabilre una correlazione tra questo isotopo e il ciclo solare.

Attivitá solare e alterazioni nella istruttura della corona. Le alterazioni nella intensitá e distribuzione del campo magnetico lungo il ciclo solare, evidenziata dal numero e distribuzione delle macchie, prominenze e filamenti, anche si riflettono nella struttura della corona.(Fonte: Yohkoh/NOAA/HAO)

Altro esempio sono le aurore boreali la cui intensitá e frequenza é superiore nelle epoche di maggiore attivitá solare.

Variazione nella concentrazione di C-14 presente negli alberi. La tendenza decrescente nella variazione di C-14 dopo la rivoluzione industriale si deve principalmente alla sua liberazione nei combustibili fossili come diossido di carbonio. Intanto anche altre variazioni qui visibili, riflettono alterazioni nel flusso di raggi cosmici.c
Macchie solari e aurore catalogate tra il 1868-1962

Anche la temperatura nella Terra puó subire cambiamenti come é giá successo nel periodo giá menzionato del Minimo di Maunder in cui avvenne una piccola era di ghiaccio che portó tutta l´Europa ad avere temperature inferiori al normale durante alcune decadi.

Temperature relative registrate dal 1000 al 2000

SAND-RIO

CONOSCENZA BASE DEL SOLE 9b) ROTAZIONE E ATTIVITÀ: REGIONI ATTIVE ED ERUZIONI.

La fotosfera, la cromosfera e la corona sono gli strati costituenti l´atmosfera del Sole. Lí é possibile incontrare strutture molto diverse il cui carattere variabile o effimero é la base del concetto di attivitá.

fotosfera, cromosfera e corona. La fotosfera, strato turbolento della superfície del Sole, si presenta tanto brillante che é l´unica parte normalmente visibile. Ci sono diverse caratteristiche ad essa associate, le principali le macchie solari e le eruzioni. Subito dopo la fotosfera abbiamo la cromosfera, una vasta regione di varie migliaia di chilometri di spessore e oltre questa, separata da una stretta zona di transizione abbiamo la corona, la parte esterna dell´atmosfera solare.

Le macchie solari sono apparentemente le strutture meno attive. Sembrano scure perché sono “fredde” ossia possiedono circa di 1700 K meno che le regioni vicine; la temperatura della regione centrale di una macchia, l´ombra, puó scendere fino ai 3.000 K. La granulazione sembra sparire, segno che la convenzione é, per lo meno superficialmente, meno forte, diminuendo cosí almeno una fonte di calore. Misure del campo magnetico solare indicano che questo é sicuramente sufficientemente intenso per sopprimere o comprimere la convenzione sottostante. sopra la macchia solare, piú questo campo modella la macchia: la pressione magnetica andrá rapidamente a dominare la pressione gassosa. È questo che mostra la penombra della macchia: i filamenti, scuri o brillanti, materializzano le linee di forza; partendo dal centro della macchia, salgono nella cromosfera e ritornano a chiudersi nuovamente sopra la fotosfera vicina. Questo fenomeno non si verifica nel caso dei PORI, piccole macchie sprovviste della penombra.

Macchia solare con penombra e pori. Nella figura si possono osservare una macchia con penombra (filamenti) e sotto i pori sprovvisti della penombra.

Una mappa magnetica di una regione attiva rivela che i campi forti non si limitano alle macchie, ma rivela anche lí sono concentrate delle zone brillanti, le FACOLE. La brillantezza elevata delle facole si spiega per avere una temperatura piú alta. La ragione per cui nello stesso campo magnetico intenso possono prodursi regioni brillanti calde, le facole, e nello stesso momento regioni scure e fredde, le macchie, forse si puó spiegare attraverso le differenti strutture del campo magnetico di convenzione.

Le diverse strutture adottate dal campo magnetico potrebbero essere alla base dell´apparizione delle differenti manifestazioni della attivitá solare: zone brillanti (flares e facole) (a) nella mappa (c) e zone scure le macchie (b) nella mappa (d).

Il dominio della pressione gassosa da parte della pressione magnetica, man mano che ci solleviamo nell´atmosfera, fa che la materia, una volta ionizzata sotto l´effetto delle alte temperature, si trovi limitata dal campo magnetico, adottando le piú diverse fantasie geometriche. Questa delimitazione risulta dall´imprigionamento delle particelle elettricamente caricate (protoni, elettroni e ioni) che vanno in spirale attorno le linee di forza. Cosí osserviamo archi di tutte le dimensioni (da 100 a 10 000 km) e di tutte le temperature.

In un arco le particelle caricate si dispongono a forma di elica attorno le linee di forza del campo magnetico (sopra). La densitá della materia é abbastanza grande per fare questi percorsi estremamente lenti. Un filamento é supportato dalla tensione del campo magnetico orizzontale (sotto). Inoltre questo ultimo si isola dall´ambiente caldo.

In questa maniera, la materia finisce di essere isolata passando ad essere supportata dal campo magnetico. è spiegata in questa maniera l´esistenza dei filamenti che sembrano scuri nel disco, perché la luce solare é assorbita lí e, al contrario, brillanti fuori dal limbo, una volta che la luce qui emessa é piú intensa del fondo cosmico. La temperatura di questi filamenti, al quale si dá nome di PROTUBERANZE o prominenze, é di circa 8.000 K., sufficientemente piú bassa del mezzo avvolgente, la corona che raggiunge 1 milione di K. : il campo magnetico appena autorizza un effetto di cambiamento di calore lungo delle sue linee di forza, isolando cosí la materia della fornace coronale.

Protuberânza solare
Prominenza eruttiva. Questa grande eruzione solare proietta materia (plasma) ad una altezza di centinaia di migliaia di chilometri sopra la fotosfera. Il gas ionizzato si trova ad alte temperature ma inferiore a quello del mezzo che lo avvolge.

Comunque, sotto diverse influenze come riscaldamento o riorganizzazione magnetica, la protuberanza puó essere “attivata” lasciando di essere in equilibrio. La materia “fredda” puó salire con una velocitá superiore a 100 Km al secondo, fino ad una altezza di un raggio solare e scomparire: in altri casi dopo la scomparsa brusca, il filamento torna e guadagna forma potendo sopravvivere a varie rotazioni solari.

Eiezione di massa coronale. In questa sequenza temporale di immagini, é visibile una enorme eiezione con una velocitá di circa 1000 Km/s. Nella misura che questa formazione aumenta di volume, una cavitá scura comincia a formarsi nella quale é possibile vedere una prominenza. Il disco nero nella parte superiore destra di ogni immagine é il disco coronografo usato per questo tipo di immagini. (Fonte:Solar Maximum Mission)

Insomma, una regione attiva assomiglia alla maggior parte dei fenomeni che stanno alla origine della attivitá solare: macchie, facole, protuberanze. Si tratta prima di tutto, di zone di linee del campo magnetico chiuse e complesse. Quando accade una riorganizzazione magnetica, fenomeni dinamici spettacolari (eiezioni di materia) e anche violenti (eruzioni) appaiono.
Le eruzioni, raramente visibili in luce bianca (le migliori osservazioni sono fatte nella banda H-alfa idrogeno) sono fenomeni violenti il cui effetto si puó far sentire sulla Terra. L´eruzione si caratterizza Per un aumento molto forte della brillantezza, coprendo enormi regioni che possono arrivare a 5.000.000 di metri quadrati.

Esiste una gamma molto grande di manifestazioni eruttive, tanto dal punto di vista della importanza del gas emessivo, come della geometria, della durata, della natura dello spettro, etc..Peró qualcosa in comune lo hanno: in meno di un minuto le intensitá dei raggi solari aumentano dieci volte o piú, essendo necessari vari decine di minuti o anche ore affinché l´emissione luminosa torni al suo livello normale.

Protuberanza in H-alfa (colori falsi) In questa protuberanza, la materia é frammentata in piccoli filamenti orientati verticalmente. Deve essersi formata probabilmente a partire dalla materia coronale vicina, nella sequenza di di una eiezione di massa, lasciando attorno una cavitá. (Fonte: Big Bear Solar Observatory)

Le strutture piú spettacolari sono i grandi getti di gas, che presentano una base a forma di bolla arrotondata, che dopo si restringono in una estesa punta in direzione a 3 o 4 raggi solari, per poi allungarsi sotto forma di una coda radiale fino ad una decina di raggi solari. Nella coda, la materia coronale si allontana dal Sole con una velocitá di espansione supersonica. Altra proiezioni di massa, piú modeste, posseggono appena la base a forma di bolla, che culmina a due o 3 raggi solari. Queste eiezioni gassose, (dette anche FLARES, le prime e PROMINENZE le seconde, possiedono tempi distinti di vita: alcuni mesi nel caso delle prominenze e alcune settimane nel caso dei Flares) succedono quando una quantitá significativa di plasma denso piú freddo o gas ionizzato scappa dai campi magnetici solari deboli, normalmente chiusi e confinati, ed é espulso verso lo spazio interplanetario o eliosfera.
Eruzioni di questo genere possono produrre grandi problemi nelle zone piú vicine alla Terra, colpendo le comunicazioni, i sistemi di navigazione e addirittura il sistema di distribuzione elettrico.

SAND-RIO